The reactions of bis(trifluoromethyl)amino-oxyl and perfluoro(2,4dimethyl-3-oxa-2,4-diazapentane) with 3,3,3-trichloropropene and 3,3,3-trichloro-2-methylpropene

Gregory D. Connelly and Anthony E. Tipping*

Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD (UK)

(Received February 22, 1993; accepted June 28, 1993)

Abstract

Reaction of the oxyl $(CF_3)_2NO \cdot (1)$ with 3,3,3-trichloropropene (2) at c. 20 °C afforded the 2:1 adduct $(CF_3)_2NOCH_2CH(CCl_3)ON(CF_3)_2$ (5) (97%) and the rearranged 2:1 adduct $(CF_3)_2NOCH_2CHClCCl_2ON(CF_3)_2$ (6) (2.5%); at 75 °C the same products were formed in the ratio 15:77. With 3,3,3-trichloro-2-methylpropene (4) and oxyl 1 at 20 °C, rearrangement was more favoured and the products were $(CF_3)_2NOCH_2CMe(CCl_3)ON(CF_3)_2$ (7) (56%) and $(CF_3)_2NOCH_2CMe(CCl_2ON(CF_3)_2$ (8) (28%), together with $(CF_3)_2NOCH_2CMe(CCl_2ON(CF_3)_2$ (9) (9%) [arising from the alkene CCl_2 =CMeCH₂Cl (c. 10%) present in the reactant olefin]. From the corresponding reactions with the oxadiazapentane $(CF_3)_2NON(CF_3)_2$ (3) at c. 20 °C, only rearranged products were isolated, i.e. $(CF_3)_2NCH_2CHClCCl_2ON(CF_3)_2$ (10) (93%) and $(CF_3)_2NCH_2CMeClCCl_2ON(CF_3)_2$ (11) (57%) + $(CF_3)_2NOCCl_2CMeClCL_2CI (12) (11.5\%)$.

Introduction

A vicinal chlorine shift in free radicals to give more stable radicals, the so-called Nesmeyanov rearrangement, was first authenticated in 1951 when it was reported that addition of hydrogen bromide to 3,3,3trichloropropene (2) under photochemical or peroxideinitiated conditions gave the rearranged 1:1 adduct $CH_2BrCHClCHCl_2$ [1], i.e.

 $Br' + CH_2 = CHCCl_3 \longrightarrow CH_2BrCHCCl_3 \longrightarrow$ (2) $CH_2BrCHClCCl_2 \xrightarrow{HBr} CH_2BrCHClCHCl_2$

Subsequent work has provided many examples of such 1,2-chlorine shifts, e.g. ref. 2, and the rearrangement has been postulated to proceed through a bridged intermediate or transition state in which the odd electron is accommodated in a chlorine d-orbital [1, 2]. An alternative mechanism involving elimination of a chlorine atom, followed by re-addition to the resulting alkene, could be important at higher temperatures when β -scission of chlorine would be expected to be more facile. Indeed, it has been suggested that all vicinal halogen rearrangements occur by this mechanism [3].

As part of a general study of free-radical rearrangement reactions initiated by $(CF_3)_2NO \cdot$ and $(CF_3)_2N \cdot$ radical attack on organic substrates, the reactions of oxyl 1 and the oxadiazapentane 3 with 3,3,3-trichloro-propene (2) and 3,3,3-trichloro-2-methylpropene (4) have been investigated.

$$\begin{array}{ccc} (CF_3)_2 NO \cdot & CH_2 = CHCCl_3 \\ (1) & (2) \\ (CF_3)_2 NON(CF_3)_2 & CH_2 = CMeCCl_3 \\ (3) & (4) \end{array}$$

Experimental

Starting materials

Oxyl 1 (96%) was prepared by oxidation of the hydroxylamine $(CF_3)_2$ NOH with potassium permanganate and sulphuric acid [4], and was converted into the oxadiazapentane 3 (82%) by reaction with trifluoronitrosomethane (2:1 molar ratio) [4]. The reactant alkenes 2 and 4+13 (ratio c. 90:10; ¹H NMR spectroscopy) were prepared as follows:

(i)
$$\operatorname{CCl_3Br} + \operatorname{CH_2} = \operatorname{CH_2} \xrightarrow{(\operatorname{PhCO}_2\operatorname{O_2})}_{170-180 \text{ °C}}$$

 $\operatorname{CH_2BrCH_2CCl_3}(67\%) \xrightarrow{\operatorname{KOH/MeOH}}_{\operatorname{CH_2}} = \operatorname{CHCCl_3}(2)(61\%)[5]$

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)02949-F

(ii) HOCH₂CHMeCCl₃ $\xrightarrow{(i) \text{ SOCl}_2}$ $\xrightarrow{(ii) \text{ PhNMe}_2}$

 $CH_2 = CMeCCl_3$ (4) + $CH_2ClCMe = CCl_2$ (13) (30%) in the ratio c. 90:10 [6]

General techniques

The reactions involving compounds 1 and 3 were carried out in vacuo in Rotaflo tubes (c. 300 cm³) unless stated otherwise. Products were separated by fractional condensation in vacuo or by preparative-scale GLC methods [Pye 104 instrument using columns (2 m) packed with Silicone SE30 oil, Apiezon L (APL) grease or trixylyl phosphate (TXP) (20%-25% w/w) on acid-washed Celite] and were examined by IR spectroscopy (Perkin-Elmer 197 instrument), ¹H NMR spectroscopy [Hitachi R20A (60.9 MHz) or Varian Associates HA100 (100.0 MHz) spectrometers; internal reference tetramethylsilane], ¹⁹F NMR spectroscopy [Hitachi R20A (56.46 MHz) or Varian HA100 (94.1 MHz) instruments; external reference trifluoroacetic acid] and mass spectrometry (AEI MS902 instrument with an electron beam energy of 70 eV). The NMR spectra were recorded as solutions in CDCl₃ and chemical shifts to low field of reference are designated positive.

Molecular weights of gases were measured using Regnault's method and boiling points were determined by Siwoloboff's method.

Reactions of bis(trifluoromethyl)amino-oxyl (1) (a) With 3,3,3-trichloropropene (2) at room temperature

A mixture of the oxyl 1 (4.67 g, 27.7 mmol) and 3,3,3-trichloropropene (2) (2.10 g, 14.7 mmol), stored in vacuo at room temperature (6 d), gave a volatile fraction identified (IR spectroscopy) as mainly unchanged alkene 2 (0.12 g, 0.83 mmol, 6% recovered) contaminated with small amounts of bis(trifluoromethyl)amine and N,N-bis(trifluoromethyl)hydroxylamine, and a non-volatile fraction (6.64 g) which was separated into its two components (ratio 44:1) by preparative-scale GLC (2 m SE30 at 120 °C). One component was identified as 1,2-bis[bis(trifluoromethyl)amino-oxy]-3,3,3-trichloropropane (5) (nc) (6.40 g, 13.3 mmol, 97%) (Analysis: Found: C, 17.7; H, 0.5; Cl, 22.4; N, 6.0; F, 47.9%. C₇H₃Cl₃F₁₂N₂O₂ requires: C, 17.5; H, 0.6; Cl, 21.9; N, 5.8; F, 47.5%), b.p. 171 °C. ¹H NMR δ: c. 4.7 (complex, CHO- and $-CH_2O-$) ppm. ¹⁹F NMR δ : +11.3 [s, 6F, CHON(CF₃)₂]; +7.8s. 6F, CH₂ON(CF₃)₂] ppm. MS *m*/*z*: 363 [7.0%, [M-CCl₃)⁺]; 216 and 218 (14.9, C₃HClF₆NO⁺); 182 [100.0, $CH_2ON(CF_3)_2^+$]; 144/146/148/150 (13.0, $C_3H_3Cl_3^+$); 131/133/135/137 (31.1, C₂H₂Cl₃⁺); 130/132/134/136 (17.8, $C_2HCl_3^+$); 117/119/121/123 (8.0, CCl_3^+); 109/111/ 113 (55.0, $C_3H_3Cl_2^+$); 95/97/99 (30.7, $C_2HCl_2^+$); 83/85/ 87 (18.2, $CHCl_2^+$); 69 (72.8, CF_3^+). IR ν_{max} (cm⁻¹): 3000–2910 (w, C–H str.); 1300–1206 (vs, C–F str.); 1062 and 1047 (s, C–O–N str.); 966 (s, C–N str.); 840–790 (s, C–Cl str.); 710 (s, CF₃ def.). The second component was 1,3-bis[trifluoromethyl)amino-oxy]-2,3,3-trichloropropane (6) (0.15 g, 0.3 mmol, 2.5%) (see next experiment).

(b) With 3,3,3-trichloropropene (2) at 75 $^{\circ}C$

A mixture of oxyl 1 (3.32 g, 19.7 mmol) and 3,3,3trichloropropene (2) (1.34 g, 9.2 mmol), heated in vacuo in a Pyrex bulb (c. 10 dm³) at 75 °C (6 d), gave a volatile fraction (0.24 g), which was shown (IR and ¹⁹F NMR spectroscopy) to consist mainly of unchanged oxyl 1 (c. 0.20 g, c. 1.2 mmol, c. 6% recovered) and a small amount of N,N-bis(trifluoromethyl)hydroxylamine, and a non-volatile liquid (4.41 g) which was shown by GLC (2 m TXP at 130 °C and 2 m SE30 at 120 °C) to contain two major components (ratio 5:26) and four minor components. The major components were separated by preparative-scale GLC (2 m SE30 at 120 °C) and identified as the 2:1 adduct 5 (0.63 g, 1.3 mmol, 15%) and the rearranged 2:1 adduct 1,3-bis[bis(trifluoromethyl)amino-oxy]-2,3,3-trichloropropane (6) (nc) (3.39 g, 7.0 mmol, 77%) (Analysis: Found: C, 17.8; H, 0.6; Cl, 21.9; N, 6.0%. C₇H₃Cl₃F₁₂N₂O₂ requires: C, 17.5; H, 0.6; Cl, 21.9; N, 5.8%), b.p. 174 °C. ¹Η NMR δ: 4.68 (dd, 1H CHCl, J=9 and 2 Hz); 4.32 (complex, 2H, $-CH_2O-$) ppm. ¹⁹F NMR δ : +11.9 [s, 6F, (CF₃)₂NOCCl₂]; +7.8 [s, 6F, (CF₃)₂NOCH₂] ppm. MS *m*/*z*: 445/447/449 [1.0%, $(M-Cl)^+$; 409/411 [1.9, $(M-HCl_2)^+$]; 312/314/316/ 318 {39.4, $[M - (CF_3)_2NO]^+$ }; 250/252/254 [18.9, $(CF_3)_2 NOCCl_2^+$; 230/232 {3.9, $[M - (CF_3)_2 NOCCl_2]^+$ }; 216/218 (17.3, $C_3HClF_6NO^+$); 182 [57.9, $(CF_3)_2NOCH_2^+$; 168 [12.4, $(CF_3)_2NO^+$]; 150 (16.3, $C_2HF_5NO^+$; 144/146/148/150 (19.8, $C_3H_3Cl_3^+$); 131/ 133/135/137 (20.1, C₂H₂Cl₃⁺); 125/127/129 (29.8, $C_{3}H_{3}Cl_{2}O^{+}$; 95/97/99 (53.3, $C_{2}HCl_{2}^{+}$); 77/79 (15.3, $C_2H_2ClO^+$; 69 (100.0, CF_3^+); 63/65 (35.3, $CClO^+$). IR ν_{max} (cm⁻¹); 3000–2910 (w, C–H str.); 1305–1206 (vs, C-F str.); 1070 and 1050 (s, C-O-N str.); 979 (s, C-N str.); 880-817 (s, C-Cl str.); 715 (s, CF₃ def.).

(c) With 3,3,3-trichloro-2-methylpropene (4)

A mixture of oxyl 1 (3.23 g, 19.2 mmol), 3,3,3-trichloro-2-methylpropene (4) (1.395 g, 8.73 mmol) and 1,1,3trichloro-2-methylpropene (13) (0.155 g, 0.97 mmol), stored *in vacuo* at room temperature (1 h), gave (i) a -196 °C fraction (0.04 g) (Found: M, 55) shown (IR spectroscopy) to consist of unchanged oxyl 1 (0.02 g, 0.1 mmol, 0.5% recovered) and hydrogen chloride (0.02 g, 0.6 mmol, 6%), (ii) *N*,*N*-bis(trifluoromethyl)- hydroxylamine (0.07 g, 0.4 mmol, 2% based on oxyl), which condensed at -78 °C and (iii) a non-volatile liquid residue (4.56 g) which was shown by GLC (2 m TXP at 120 °C) to contain four components in the ratio 2:73:8:2.

The major components were separated by preparativescale GLC (2 m TXP at 120 °C) and identified as follows. (i) A mixture of 1,2-bis[bis(trifluoromethyl)amino-oxy]-3,3,3-trichloro-2-methylpropane (7) (nc) and 1,3-bis[bis(trifluoromethyl)amino-oxy]-1,1,2-trichloro-2-methylpropane (8) (nc) (4.03 g, 8.1 mmol, 84% based on oxyl) (Analysis: Found: C, 19.7; H, 1.1; Cl, 21.5; N, 6.0%. C₈H₅Cl₃F₁₂N₂O₂ requires: C, 19.4; H, 1.0; Cl, 21.5; H, 5.7%) in the ratio 67:33. ¹H NMR: bands for compound 7 at δ 4.47 and 4.33 (AB, 2H, $-CH_{A}H_{B}O-$, $J_{AB}=11$ Hz) and 1.74 (s, 3H, CH₃) ppm and for compound 8 at δ 4.62 and 4.54 (AB, 1H, $-CH_AH_BO-$, $J_{AB}=11$ Hz) and 1.82 (s, 1.5H, CH₃) ppm. ¹⁹F NMR: bands for compound 7 at δ +10.6 [complex, 6F, $-CON(CF_3)_2$] and +7.9 [s, 6F, $CH_2ON(CF_3)_2$ ppm and for compound 8 at $\delta + 12.4$ $[s, 3F, CCl_2ON(CF_3)_2]$ and $+7.9 [s, 3F, CH_2ON(CF_3)_2]$ ppm. MS m/z: 459/461/463 [8.9%, (M-Cl)⁺]; 377 $[5.2, (M-CCl_3)^+]; 326/328/330/332$ {26.3, [M- $(CF_3)_2NO]^+$; 312/314/316/318 {10.3, $[M-(CF_3)_2 NOCH_2$]⁺}; 290/292/294 {37.4, [M – (CF₃)₂NO – $HCl]^+$; 250/252/254 [1.9, (CF₃)₂NOCCl₂⁺]; 244/246 (99.1, {5.9, $[M - (CF_3)_2 NOCCl_2]^+$; 216/218 $C_3HClF_6NO^+$; 182 [85.0, (CF₃)₂NOCH₂⁺]; 158/160/ 162/164 (35.2, $C_4H_5Cl_3^+$); 144/146/148/150 (27.6, $C_{3}H_{3}Cl_{3}^{+}$; 123/125/127 (50.0, $C_{4}H_{5}Cl_{2}^{+}$); 117/119/121/ 123 (1.2, CCl₃⁺); 109/111/113 (25.9, C₃H₃Cl₂⁺); 69 (78.9, CF_3^+); 43 (100.0, $C_2H_3O^+$). IR ν_{max} (cm⁻¹) 3000–2900 (w, C-H str.); 1333-1205 (vs, C-F str.); 1070-1045 (s, C-O-N str.); 980-940 (s, C-N str.); 836-809 (s, C-Cl str.); 710 (s, CF_3 def.). (ii) 1,2-Bis[bis(trifluoromethyl)amino-oxy]-1,1,3-trichloro-2-methylpropane (9) (nc) (0.45 g, 0.9 mmol, 9% based on oxyl) (Analysis: Found: C, 19.5; H, 1.0; N, 5.9%. C₈H₅Cl₃F₁₂N₂O₂ requires: C, 19.4; H, 1.0; N, 5.7%). ¹H NMR δ: 3.96 (br., 2H, CH₂Cl); 1.75 (s, 3H, CH₃) ppm. ¹⁹F NMR δ : +12.4 [s, 6F, CCl₂ON(CF₃)₂]; +10.6 [s, 6F, $-CON(CF_3)_2$] ppm. MS m/z: 458/460/462 [4.6%, $(M - HCl)^+$; 445/447/449 [6.8, $(M - CH_2Cl)^+$]; 326/328/ $330/332 \{30.1, [M-(CF_3)_2NO]^+\}; 291/293/295 (8.9,$ $C_6H_5Cl_2F_6NO^+$; 277/279/281 (7.0, $C_5H_3Cl_2F_6NO^+$); 250/252/254 [1.6, (CF₃)₂NOCCl₂⁺]; 244/246 {6.2, $[M - (CF_3)_2 NOCCl_2]^+$; 216/218 (8.2, C₃HClF₆NO⁺); 158/160/162/164 (37.2, C₄H₅Cl₃⁺); 123/125/127 (22.1, $C_4H_5Cl_2^+$; 111/113/115 (25.5, $C_3H_5Cl_2^+$); 69 (33.5, CF_{3}^{+} ; 49/51 (8.5, $CH_{2}Cl^{+}$); 43 (100.0, $C_{2}H_{3}O^{+}$).

Reactions of perfluoro(2,4-dimethyl-3-oxa-2,4diazapentane) (3)

(a) With 3,3,3-trichloropropene (2)

A mixture of oxadiazapentane 3 (2.24 g, 7.0 mmol) and 3,3,3-trichloropropene (2) (1.0 g, 6.9 mmol), stored in vacuo at room temperature (20 h), gave (i) a volatile fraction (1.32 g) which was shown (IR and ¹⁹F NMR spectroscopy) to consist of unchanged oxadiazapentane 3 (1.31 g, 4.0 mmol, 57% recovered) contaminated with trace amounts of bis(trifluoromethyl)amine and N,Nbis(trifluoromethyl)hydroxylamine and (ii) a colourless non-volatile liquid (1.92 g) shown by GLC (2 m SE30 at 114 °C) to contain two major components (ratio 58:42). The components were separated by preparativescale GLC (2 m SE30 at 110 °C) and identified as unchanged 3,3,3-trichloropropene (2) (0.56 g, 3.9 mmol, 56% recovered) and 3-bis(trifluoromethyl)amino-1bis(trifluoromethyl)amino-oxy-1,1,2-trichloropropane (10) (nc) (1.30 g, 2.8 mmol, 93%) (Analysis: Found: C, 18.4; H, 0.5; Cl, 22.9; H, 6.0; F, 49.1%. C₇H₃Cl₃F₁₂N₂O requires: C, 18.1; H, 0.6; Cl, 22.6; N, 6.0; F, 49.1%), b.p. 176 °C. ¹H NMR δ : 4.37 (dd, 1H, CHCl, J=10and 2 Hz); 4.05 and 3.58 (2 ABd, 2H, -CH_AH_B N-, $J_{AB} = 16$ Hz) ppm. ¹⁹F NMR δ : +18.6 [s, 6F, (CF₃)₂NCH₂]; +11.9 [s, 6F, (CF₃)₂NOCCl₂] ppm. MS, $m/z: 263/265/267 \{14.3\% [M - (CF_3)_2NCH_2Cl]^+\}; 250/$ $(CF_3)_2 NOCCl_2^+];$ 252/254 [3.6, 214/216 $\{1.8,$ $[M - (CF_3)_2 NOCCl_2]^+$; 182 (12.7, $C_3 H_2 F_6 NO^+$); 166 [100.0, (CF₃)₂NCH₂⁺]; 109/111/113 (3.1, C₃H₃Cl₂⁺); 78/ 80 (38.8, C₂H₃ClO⁺); 69 (51.7, CF₃⁺). IR ν_{max} (cm⁻¹); 3020-2980 (w, C-H str.); 1370-1150 (vs, C-F str.); 1045 and 1028 (s, C-O-N str.); 963 (s, C-N str.); 840-790 (s, C-Cl str.); 712 (s, CF₃ def.).

(b) With 3,3,3-trichloro-2-methylpropene (4)

A mixture of oxadiazapentane 3 (2.62 g, 8.2 mmol), 3,3,3-trichloro-2-methylpropene (4) (1.233 g, 7.74 mmol) and 1,1,3-trichloro-2-methylpropene (13) (0.137 g, 0.86 mmol), stored in vacuo at room temperature (8 d), gave (i) a volatile mixture (0.50 g) shown (IR spectroscopy) to consist of hydrogen chloride, bis(trifluoromethyl)amine N,N-bis(trifluoroand methyl)hydroxylamine and (ii) a non-volatile liquid (3.49 g) shown by GLC (2 m APL at 100 °C) to contain 10 components of which two were major. The two major components were separated by preparative-scale GLC (2 m APL at 100 °C) to afford the following. (i) 1-Bis(trifluoromethyl)amino-oxy-3-bis(trifluoromethyl)amino-1,1,2-trichloro-2-methylpropane (11) (nc) (2.32 g, 4.9 mmol, 57%) (Analysis: Found: C, 20.3; H, 1.2; N, 6.1; F, 47.8%. C₈H₅Cl₃F₁₂N₂O requires: C, 20.0; H, 1.0; N, 5.8; F, 47.5%). ¹H NMR δ: 3.93 [br., 2H, CH₂N(CF₃)₂]; 1.81 (s, 3H, CH₃) ppm. ¹⁹F NMR δ : +20.2 [s, 6F, (CF₃)₂NCH₂]; +12.5[s, 6F, (CF₃)₂NOCCl₂] ppm. MS *m*/*z*: 277/279/281 {14.4%,

 $[M - (CF_3)_2NCH_2Cl]^+$; 228/230 {6.1, $[M - (CF_3)_2^ NOCCl_2]^+$; 182 (12.9, $C_3H_2F_6NO^+$); 166 [100.0, (CF₃)₂NCH₂⁺]; 158/160/162/164 (5.4, C₄H₅Cl₃⁺); 133 $(5.6, C_2F_5N^+); 111/113/115 (5.7, C_3H_5Cl_2^+); 95/97/99$ $(51.6, C_2HCl_2^+); 90/92 (17.4, C_3H_3OCl^+); 78 (28.8,$ $C_2H_2F_2N^+$; 69 (54.8, CF_3^+). IR ν_{max} (cm⁻¹): 3010–2915 (w, C-H str.); 1387-1164 (vs, C-F str.); 1029 (s, C-O-N str.); 970 (s, C-N str.); 845-808 (s, C-Cl str.); 712 (s, CF_3 def.). (ii) Impure 1bis(trifluoromethyl)amino-oxy-1,1,2,3-tetrachloro-2methylpropane (12) (nc) (0.36 g, 1.00 mmol, 11.5%); ¹H NMR δ: 4.10 (br., 2H, CH₂Cl); 2.02 (s, 3H, CH₃) ppm. ¹⁹NMR δ : +13.2 [s, (CF₃)₂NOCCl₂] ppm. MS *m/z*: 326/328/330/332 [100.0%, (M-Cl)⁺]; 312/314/316/ 318 [2.2, $(M-CH_2Cl)^+$]; 290/292/294 [25.9, (M-HCl₂)⁺]; 250/252/254 [2.1, (CF₃)₂NOCCl₂⁺]; 193/195/ 197/199/201 (39.4, C₄H₅Cl₄⁺); 158/160/162/164 (29.2, C₄H₅Cl₃⁺); 157/159/161/163 (50.3, C₄H₄Cl₃⁺); 144/146/ 148/150 (25.5, C₃H₃Cl₃⁺); 123/125/127 (18.6, C₄H₅Cl₂⁺); 111/113/115 (77.1, $C_3H_5Cl_2^+$); 69 (37.9, CF_3^+); 49/51 $(17.6, CH_2Cl^+); 41 (9.3, C_3H_5^+); 39 (22.2, C_3H_3^+).$

Results and discussion

The results obtained from the reaction of oxyl 1 and oxadiazapentane 3 with the alkenes 2 and 4 are summarised in Table 1.

$$(CF_3)_2NOCH_2CR(CCl_3)ON(CF_3)_2$$

(5) R = H
(7) R = Me
 $(CF_3)_2NOCH_2CRClCCl_2ON(CF_3)_2$
(6) R = H
(8) R = Me
 $(CF_3)_2NOCCl_2CMe(CH_2Cl)ON(CF_3)_2$
(9)

$$(CF_3)_2NCH_2CRClCCl_2ON(CF_3)_2$$

(10) R = H
(11) R = Me
 $(CF_3)_2NOCCl_2CMeClCH_2Cl$
(12)

The high-boiling products 5–12 were separated by preparative-scale GLC and were identified by consideration of their ¹⁹F NMR and mass spectra (Table 2); compounds 7 and 8 could not be separated and were analysed as a mixture (2:1 molar ratio). The ¹H NMR spectra did not allow a differentiation between rearranged and non-rearranged structures, although they showed absorptions in the expected regions for methylene and methyl or methine protons.

From the data it is clear that products 5–8 contain a $(CF_3)_2NOCH_2$ grouping, products 6 and 8–12 contain a $(CF_3)_2NOCCl_2$ grouping, products 10 and 11 contain a $(CF_3)_2NCH_2$ grouping and products 5, 7 and 9 contain a second $(CF_3)_2NO$ group. Compounds 5 and 7 also contain a CCl_3 group and compounds 9 and 12 a CH_2Cl group. Confirmation that compound 12 was a tetrachloride was obtained from the existence of a mass spectral peak at m/z 193 {39%, $C_4H_5Cl_4^+$, i.e. $[M - (CF_3)_2NO]^+$ }.

Products 5-8 obtained from the reactions of oxyl 1 were formed via the intermediate radical 14 and the rearranged radical 15; the remaining substituted alkane 9, the 2:1 adduct of oxyl 1 and the alkene $CCl_2=CMeCH_2Cl$ 13 (present as an impurity), arose via the intermediate radical 16 (Scheme 1).

Rearrangement of the secondary radical **14a** to radical **15a** via a 1,2-chlorine shift did not compete effectively at room temperature with the scavenging of radical **14a** by oxyl **1**; at 75 °C, however, rearrangement was the major reaction pathway.

The driving force for rearrangement is the formation of a more stable radical and it would be expected that rearrangement of the secondary radical **14a** would be more facile than that of the tertiary radical **14b**. How-

Reactants	Molar ratio	Time (h)	Temperature (°C)	Recovered reactants (%)	Products (%) ^{b,c}
1+2	c. 2:1	144	c. 20	2(6)	5 (97); 6 (2.5)
1+2	c. 2:1	144	75	1(6)	5(15); 6(77)
$1 + 4^{a}$	c. 2:1	1	c. 20	1(0.5)	7(56); 8(28); 9(9) ^d
3+2	c. 1:1	20	c. 20	2 (56); 3 (57)	10(93)
$3 + 4^{a}$	c. 1:1	192	c. 20		11 (57); 12 (11.5) ^e

TABLE 1. Reactions of $(CF_3)_2NO \cdot$ and $(CF_3)_2NON(CF_3)_2$ with the alkenes $CH_2=CRCCl_3$ (R = H and Me)

^aAlkene 4 contained $CCl_2 = CMeCH_2Cl$ (13) (c. 10%).

^bYields based on reactants 1 or 3 consumed.

'Small amounts of $(CF_3)_2NH$ and/or $(CF_3)_2NOH$ also formed.

^dHCl (6%) and two minor high-boiling products also formed.

"HCl and eight minor high-boiling products also formed.

Compound	5	6	7	8	9	10	11	12	Assignment
	$\binom{+7.8}{+11.3}$	+ 7.8	+ 7.8	+ 7.8					(CF ₃) ₂ NOCH ₂ (CF ₃) ₂ NOCHCl
δ _F	{	+ 11.9		+12.4	+12.4	+ 11.9	+ 12.5	+ 13.2	$(CF_3)_2NOCCl_2$
			+10.6		+10.6	. 10.7	. 20.2		$(CF_3)_2$ NOCMe
	l					+18.6	+20.2		$(CF_3)_2NCH_2$
	ſ				445			312	$(M - CH_2Cl)^+$
					(7)			(2)	
	363		377						$(M - CCl_3)^+$
	(7)		(5)						
		250		250	250	250		250	$(CF_3)_2 NOCCl_2^+$
		(19)		(2)	(2)	(4)		(2)	
		230		244	244	214	228	111	$[(M - CF_3)_2 NOCCl_2]^+$
	J	(4)		(6)	(6)	(2)	(6)	(77)	
m/z^{a}	182	182	182	182					$(CF_3)_2NOCH_2^+$
(%)	(100)	(58)	(85)	(85)					
						166	166		$(CF_3)_2NCH_2^+$
						(100)	(100)		
	117		117						CCl ₃ ⁺
	(8)		(11)						
					49			49	CH_2Cl^+
	ι				(9)			(18)	

TABLE 2. ¹⁹F NMR chemical shifts (ppm relative to TFA) and mass spectral peaks for products 5-12

^aFor peaks due to ions containing chlorine, only the ³⁵Cl peak is given.

 $(CF_3)_2NO + CH_2 = CRCCI_3 \longrightarrow (CF_3)_2NOCH_2CRCCI_3 \xrightarrow{1,2-CI} (CF_3)_2NOCH_2CRCICCI_2$ (14) a;R ⊨ H (2) R = H (15) a; R = H (1)(4) R = Me **b**; R = Me **b**; R = Me 1 (CF₃)₂NOCH₂CRCICCl₂ON(CF₃)₂ $(CF_3)_2 NOCH_2 CR(CCl_3)ON(CF_3)_2$ (5) R = H (6) R = H(8) R = Me (7) R = Me (CF₃)₂NOCMe(CH₂Cl)CCl₂ CH₂CICMe=CCl₂ (16) (13) 1 (CF₃)₂NOCMe(CH₂Cl)CCl₂ON(CF₃)₂ (9)

Scheme 1.

ever, at room temperature the opposite was observed, i.e. rearrangement of radical 14b to radical 15b (28%) was favoured over rearrangement of radical 14a to radical 15a (2.5%). It is possible that this observation is a consequence of increased steric hindrance towards coupling with oxyl 1 in the tertiary radical 14b relative to the secondary radical 14a, thus allowing rearrangement of 14b to 15b to become more favoured.

It is well established that 1:1 adduct formation between the oxadiazapentane 3 and alkenes involves a radical-chain mechanism initiated by homolytic N–O bond fission, followed by $(CF_3)_2N \cdot$ radical attack on

Scheme 2.

the alkene and then chain transfer by attack of the resulting radical on 3 at oxygen [7–9]. In certain cases, especially at elevated temperature, the 2:1 adduct of oxyl 1 and the alkene can be formed as a by-product, e.g. with tetrachloroethene [10].

The reaction between 3 and alkene 2 was clean and gave the rearranged 1:1 adduct 10 in high yield via the radicals 17a and 18a. In contrast, reaction of 3 with the 2-methylalkene 4 was somewhat complex and afforded a mixture of the compounds HCl, $(CF_3)_2NH$ and $(CF_3)_2NOH$, together with a high-boiling mixture comprising of 10 components from which only the major products, the rearranged 1:1 adduct 11 and tetrachloride 12, could be separated by GLC methods and identified. Compounds 10–12 are considered to have been formed as shown in Scheme 2.

Since only rearranged 1:1 adducts, i.e. 10 and 11, were isolated, it is evident that the chain-transfer reactions involving the initially-formed radicals 17 and oxadiazapentane 3 are slower than those between radicals 14 and oxyl 1, thus allowing rearrangement of radicals 17 to radicals 18 via a 1,2-chlorine shift, prior to chain transfer with 3, to be the major reaction pathway.

The formation of tetrachloride 12 requires a chlorine atom attack on alkene 4 and/or alkene 13 to have occurred to give the intermediate radical 19, which then reacts with oxadiazapentane 3 at oxygen. It is probable that the chlorine atoms arose by β -scission of chlorine from the radical 17b; the presence of hydrogen chloride in the products from the reaction of oxyl 1 with alkene 4 indicates that β -scission of chlorine from radical 14b also occurs to some extent.

References

- 1 A.N. Nesmeyanov, R.Kh. Freidlina and V.I. Firstov, Izv. Akad. Nauk SSSR, Otdel Khim. Nauk, (1951) 505.
- 2 A.N. Nesmeyanov, R.Kh. Freidlina, V.N. Kost and M.Ya. Khorlina, *Tetrahedron, 16* (1961) 94.
- 3 W.O. Haag and E.I. Heiba, Tetrahedron Lett., (1965) 3683.
- 4 R.E. Banks, R.N. Haszeldine and M.J. Stevenson, J. Chem. Soc. C, (1966) 901.
- 5 W. Reeve and L.W. Fine, Can. J. Chem., 41 (1963) 2231.
- 6 D.G. Kundinger, H. Pledger and L.E. Ott, J. Am. Chem. Soc., 77 (1955) 6659.
- 7 R.N. Haszeldine and A.E. Tipping, J. Chem. Soc., (1966) 1236.
- 8 G.L. Fleming, R.N. Haszeldine and A.E. Tipping, J. Chem. Soc. C, (1971) 3833.
- 9 R.E. Banks, R.N. Haszeldine and T. Myerscough, J. Chem. Soc., Perkin Trans. 1, (1972) 1449.
- 10 G. Newsholme, Ph.D. Thesis, University of Manchester, 1978.